


# Stepper Motor Linear Actuators



HelixLinear.com | 855-435-4958

### **Partners**



# Certifications



# **Table of Contents**

| About Helix Linear lechnologies            |
|--------------------------------------------|
| Captive Stepper Motor Linear Actuators 4-5 |
| Non-Captive Stepper Motor Linear Actuators |
| External Stepper Motor Linear Actuators    |
| NEMA 810-17                                |
| NEMA 11                                    |
| NEMA 14                                    |
| NEMA 17                                    |
| NEMA 23                                    |
| NEMA 34                                    |
| Available Lead Screws                      |



Helix Linear Technologies, Inc., Beachwood, Ohio USA

# Company

Helix Linear Technologies is a global manufacturer of linear actuators, lead screws and ball screws. Serving clients in the ærospace, medical, life science, security, semiconductor, and defense industries, we focus on helping our customers achieve their application and profitability goals. Our innovative product design and world-class engineering capabilities solve real-world linear motion issues, building a foundation for our client's long-term success.

# Culture

Our culture is rooted in agility, responsiveness, and teamwork. Our team comprises happy, competitive professionals who are experts in manufacturing innovative electromechanical linear motion solutions. We strive to exceed our customers' expectations in all interactions and are committed to continuous improvement.

# History

Helix Linear Technologies was founded in 2011 to meet the growing demand for high-precision lead screws in the electromechanical actuation industry. Our rapid growth and expanded product lines now include end-to-end linear actuator solutions, providing our clients with customized options and fully integrated solutions.

# Market Segments Served

- Medical & Diagnostic
   Aerospace
   Packaging
   Automotive
- Electronics
  - Transportation
  - **7** Patient Handling
- 1 Entertainment

Semiconductor
 Military and Defense
 Factory Automation
 Pulp & Paper

Steel
Chemical
Agriculture/Food Handling
Tire Manufacture





In a captive linear actuator design, the lead screw is connected to a spline shaft that passes through a spline bushing to keep it from rotating. The spline bushing prevents the lead screw from rotating but allows enough clearance for the shaft to move axially as the lead screw is driven back and forth with a corresponding clockwise and counterclockwise turn of the motor. The anti-rotation feature is inherent in the design and creates a stand-alone unit that pushes and pulls whatever device it is attached to. Because it is independent, this actuator can also provide a push force without being attached to anything. For this reason, it's an excellent choice for push-button applications where the return motion is handled by a spring pre-load or influenced by gravity.

Captive stepper motor linear actuators from Helix Linear Technologies are available in NEMA sizes 8, 11, 14, 17, and 23 with single and double stack options.



# **Captive Stepper Motor Linear Actuators**

Part Number Configuration Guide



#### SMA - <u>8 S 2.5 - C - W12125 - 1.00 - ME - ER - B</u>

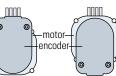
| NEMA Stepper Motor Size<br>8 11 14 17 23<br>Motor Length<br>S = single stack<br>D = double stack                                                                                                               |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Voltage (see table below)                                                                                                                                                                                      |  |
| Captive Stepper Motor Actuator                                                                                                                                                                                 |  |
| Lead Screw See Lead Screw Table on page 56                                                                                                                                                                     |  |
| Stroke Code (in inches)           0.25         0.50         0.75         1.00         1.25         1.50         2.00                                                                                           |  |
| Machined End<br>SE = imperial machined end<br>ME = metric machined end                                                                                                                                         |  |
| Encoder<br>ER = encoder-ready<br>E200 = 200 counts per rev<br>E500 = 500 counts per rev<br>E1000 = 1000 counts per rev<br>E2000 = 2000 counts per rev<br>00 = no encoder<br>Encoder Position (see table below) |  |
| $ \begin{array}{rcl} A & = & up \\ B & = & down \\ 00 & = & no encoder \end{array} $                                                                                                                           |  |

### Available Motor Voltages

| Motor Size | A    | vailable Voltag | es  |
|------------|------|-----------------|-----|
| NEMA 8     | 2.5  | 5               | 7.5 |
| NEMA 11    | 2.1  | 5               | 12  |
| NEMA 14    | 2.33 | 5               | 12  |
| NEMA 17    | 2.33 | 5               | 12  |
| NEMA 23    | 3.25 | 5               | 12  |

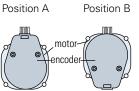
### **Encoder Positions**

motor -


encoder

motor










NEMA 11, 14, 17

Position B



NEMA 23, 34





In a non-captive actuator linear actuator, the lead screw does not have an anti-rotation feature. Instead, external mechanical components separate from the motor are introduced into the design to keep the lead screw from rotating. As a result, the lead screw moves back and forth axially by restricting its rotation, which then drives the device it is attached to back and forth.

A non-captive actuator is more straightforward and compact than a captive linear actuator. It is an excellent option when the machine design already includes a built-in guide mechanism or anti-rotation feature. In some specific applications, the lead screw can be provided in longer lengths, supported at each end, and held in tension.

Non-captive stepper motor linear actuators from Helix Linear Technologies are available in NEMA sizes 8, 11, 14, 17, 23, and 34 with single and double stack options.



# **Non-Captive Stepper Motor Linear Actuators**

Part Number Configuration Guide



### $\mathsf{SMA} - \underline{8} \underbrace{\$} \underbrace{2.1}_{-1} - \underbrace{N}_{-1} - \underbrace{W12125}_{-1} - \underbrace{00}_{-1} - \underbrace{8.00}_{-1} - \underbrace{SE}_{-1} - \underbrace{00}_{-1} - \underbrace{00}_{-1}$

| NEMA Stepper Motor Size<br>8 11 14 17 23 34                                                     |  |
|-------------------------------------------------------------------------------------------------|--|
| Motor Length<br>S = single stack<br>D = double stack                                            |  |
| Voltage (see table below)                                                                       |  |
| Non-Captive Stepper Motor Actuator                                                              |  |
| Lead Screw                                                                                      |  |
| see Lead Screw Table on page 56                                                                 |  |
| Coating                                                                                         |  |
| 00 = no coating                                                                                 |  |
| Lead Screw Length                                                                               |  |
| in inches                                                                                       |  |
| Machined End<br>ME = metric machined end<br>SE = imperial machined end<br>OO = no end machining |  |
| Encoder                                                                                         |  |
| ER = encoder-ready<br>E200 = 200 counts per rev                                                 |  |
| E500 = 500 counts per rev                                                                       |  |
| E1000 = 1000 counts per rev<br>E2000 = 2000 counts per rev                                      |  |
| 00 = no encoder                                                                                 |  |
| Encoder Position (see table below)                                                              |  |
| A = up                                                                                          |  |
| B = down<br>00 = no encoder                                                                     |  |
|                                                                                                 |  |

# Available Motor Voltages

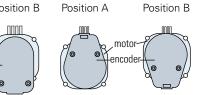
| Motor Size | A    | vailable Voltag | es  |
|------------|------|-----------------|-----|
| NEMA 8     | 2.5  | 5               | 7.5 |
| NEMA 11    | 2.1  | 5               | 12  |
| NEMA 14    | 2.33 | 5               | 12  |
| NEMA 17    | 2.33 | 5               | 12  |
| NEMA 23    | 3.25 | 5               | 12  |
| NEMA 34    | 2.85 | 5               | 12  |

motor-

encoder-

#### Encoder Positions NEMA 8

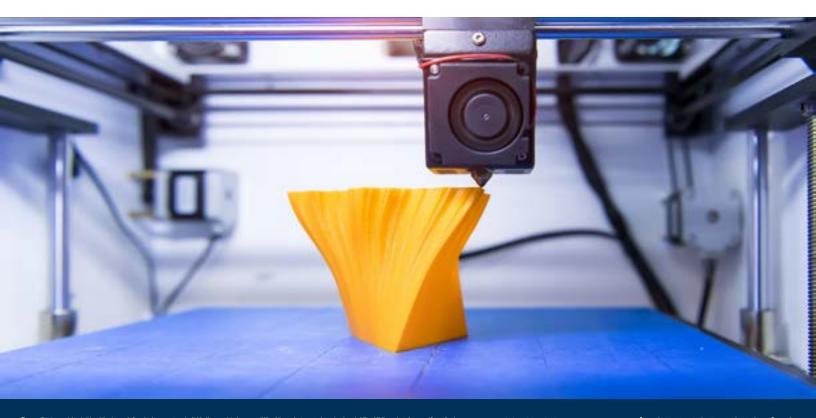
motor


encoder

motor

Position A Position B

NEMA 11, 14, 17 Position A Position


14, 17NEMA 23, 34Position BPosition APosition APosition A







External stepper motor linear actuators feature a lead screw that is press-fit directly into the rotor of the motor. As a result, the threaded screw rotates outside of the motor body and is paired with a mating nut. This design configuration eliminates the coupling between the motor and lead screw, saving valuable design space and increasing stroke length. External stepper motor linear actuators from Helix Linear Technologies are also highly configurable with a wide range of standard lead options and numerous freewheeling and anti-backlash nuts styles. Rotation prevention of the nut is necessary to create high-resolution linear motion.



# **External Stepper Motor Linear Actuators**

Part Number Configuration Guide

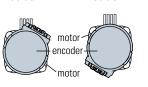


# SMA - <u>8 S 2.1</u> - <u>E</u> - <u>012125</u> - <u>NFA</u> - <u>8.00</u> - <u>T</u> - <u>M1</u> - <u>E200</u> - <u>A</u>

| NEMA Stepper Motor Size                                                                                                                                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Motor Length<br>S = single stack<br>D = double stack                                                                                                    |  |
| Voltage (see table below)                                                                                                                               |  |
| External Stepper Motor Actuator                                                                                                                         |  |
| Lead Screw<br>see Lead Screw Table on page 57                                                                                                           |  |
| Nut Style (see table)                                                                                                                                   |  |
| Lead Screw Length                                                                                                                                       |  |
| Screw Coating<br>T = H10X™ PTFE coating<br>00 = no coating                                                                                              |  |
| Bearing Support         M1       = universal mount single bearing         F1       = flanged mount single bearing         00       = no bearing support |  |
| EncoderER= encoder readyE200= 200 counts per revE500= 500 counts per revE1000= 1000 counts per revE2000= 2000 counts per rev00= no encoder              |  |
| Encoder Position (see table below)<br>A = up<br>B = down                                                                                                |  |

<sup>00 =</sup> no encoder

#### Available Motor Voltages

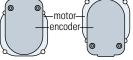

| Motor Size | Motor Size Available Voltages |   |     |
|------------|-------------------------------|---|-----|
| NEMA 8     | 2.5                           | 5 | 7.5 |
| NEMA 11    | 2.1                           | 5 | 12  |
| NEMA 14    | 2.33                          | 5 | 12  |
| NEMA 17    | 2.33                          | 5 | 12  |
| NEMA 23    | 3.25                          | 5 | 12  |
| NEMA 34    | 2.85                          | 5 | 12  |

### Nut Style Matrix

| Style                   | Threaded | Flanged |
|-------------------------|----------|---------|
| Standard                | NTA      | NFA     |
| Anti-Backlash Axial     | ATA      | AFA     |
| Anti-Backlash Radial    | RTA      | RFA     |
| Anti-Backlash Torsional | KTA      | KFA     |

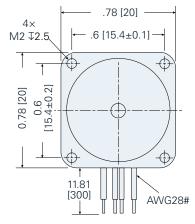
**Encoder Positions** 

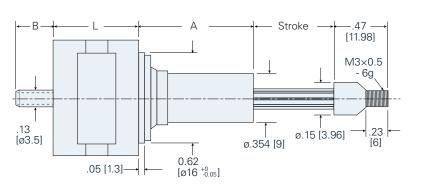
#### NEMA 8 Position A Position B




**NEMA 34** 

\_motorencode Position B

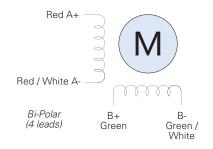

Position A


# Position A Position B



NEMA 11, 14, 17, 23







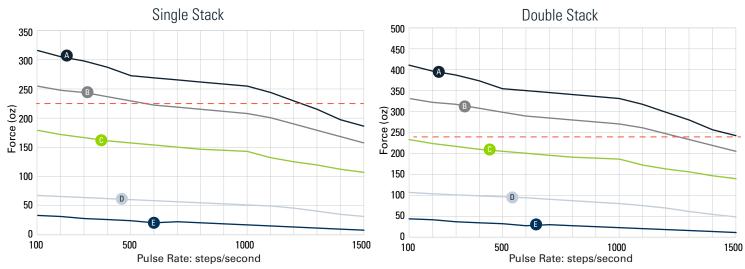

| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase |     | otor<br>ight | Power<br>Input | l     | -  |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|-----|--------------|----------------|-------|----|
| • Temperature Rise: 167°F (75°C)                                                                  | V       | А       | Ω                    | mH                   | OZ  | g            | W              | in    | mm |
| Single Stack                                                                                      | 2.5     | 0.49    | 5.1                  | 1.5                  | 1.5 | 43           | 4.2            | 1.18  | 30 |
|                                                                                                   | 5       | 0.24    | 20.4                 | 6.7                  | 1.5 | 43           | 4.2            | 1.18  | 30 |
|                                                                                                   | 7.5     | 0.16    | 45.9                 | 39                   | 1.5 | 43           | 4.2            | 1.18  | 30 |
| Double Stack                                                                                      | 2.5     | 1.9     | 1.1                  | 1.1                  | 2.4 | 68           | 7.5            | 1.496 | 38 |
|                                                                                                   | 5       | 0.75    | 6.7                  | 5.8                  | 2.4 | 68           | 7.5            | 1.496 | 38 |
|                                                                                                   | 7.5     | 0.35    | 34.8                 | 35.6                 | 2.4 | 68           | 7.5            | 1.496 | 38 |

### Stroke Codes

| Stroke Stroke |      | ļ    | 4    | В    |      |      |  |  |  |
|---------------|------|------|------|------|------|------|--|--|--|
| Code          | in   | mm   | in   | mm   | in   | mm   |  |  |  |
| 0.35          | .35  | 9.0  | .44  | 11.1 | .06  | 1.6  |  |  |  |
| 0.50          | .50  | 12.7 | .58  | 14.8 | .21  | 5.3  |  |  |  |
| 0.75          | .75  | 19.1 | .83  | 21.2 | .46  | 11.6 |  |  |  |
| 1.00          | 1.00 | 25.4 | 1.08 | 27.5 | .72  | 17.9 |  |  |  |
| 1.25          | 1.25 | 31.8 | 1.33 | 33.9 | .96  | 24.3 |  |  |  |
| 1.50          | 1.50 | 38.1 | 1.58 | 40.2 | 1.20 | 30.7 |  |  |  |







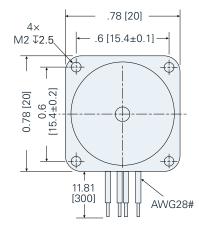


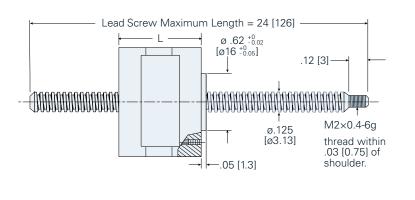

### **Screw Specifications**

| Screw  | rew Diameter Lead |     |        | Travel p | per Step |         |   |
|--------|-------------------|-----|--------|----------|----------|---------|---|
| Code   | in                | mm  | in     | mm       | in       | mm      |   |
| W12012 | .140              | 3.6 | .012   | 0.3048   | .00006   | .001524 | A |
| W12024 | .140              | 3.6 | .024   | 0.6096   | .00012   | .003048 | B |
| W12039 | .140              | 3.6 | .03937 | 1        | .000197  | .005    | C |
| W12048 | .140              | 3.6 | .048   | 1.2192   | .00024   | .006096 |   |
| W12078 | .140              | 3.6 | .07874 | 2        | .000394  | .010    |   |
| W12096 | .140              | 3.6 | .096   | 2.4384   | .00048   | .012192 | D |
| W12157 | .140              | 3.6 | .15748 | 4        | .000787  | .020    |   |
| W12315 | .140              | 3.6 | .31496 | 8        | .001575  | .040    | e |

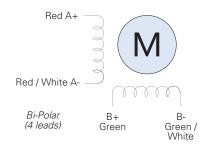
Native units: 🗌 imperial 📒 metric




#### Force v Pulse Rate Charts


- - - - = Recommended load limit

Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.





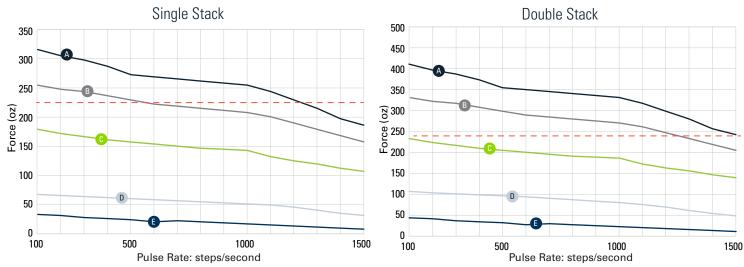





| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase |     | otor<br>ight | Power<br>Input | L (n  | nax) |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|-----|--------------|----------------|-------|------|
| • Temperature Rise: 167° F (75° C)                                                                | V       | А       | Ω                    | mH                   | OZ  | g            | W              | in    | mm   |
| Single Stack                                                                                      | 2.5     | 0.49    | 5.1                  | 1.5                  | 1.5 | 43           | 4.2            | 1.18  | 30   |
|                                                                                                   | 5       | 0.24    | 20.4                 | 6.7                  | 1.5 | 43           | 4.2            | 1.18  | 30   |
|                                                                                                   | 7.5     | 0.16    | 45.9                 | 39                   | 1.5 | 43           | 4.2            | 1.18  | 30   |
|                                                                                                   | 2.5     | 1.9     | 1.1                  | 1.1                  | 2.4 | 68           | 7.5            | 1.496 | 38   |
| Double Stack                                                                                      | 5       | 0.75    | 6.7                  | 5.8                  | 2.4 | 68           | 7.5            | 1.496 | 38   |
|                                                                                                   | 7.5     | 0.35    | 34.8                 | 35.6                 | 2.4 | 68           | 7.5            | 1.496 | 38   |







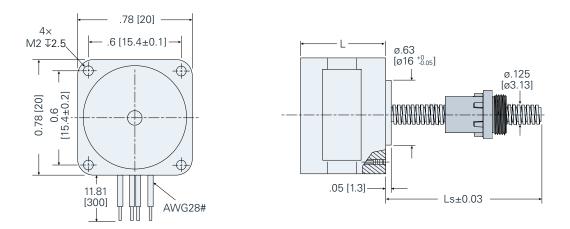



### **Screw Specifications**

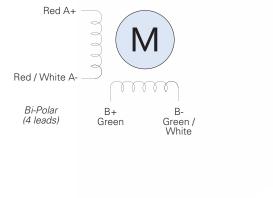
| Screw  | Dian | neter | Le     | ad     | Travel p | per Step |   |
|--------|------|-------|--------|--------|----------|----------|---|
| Code   | in   | mm    | in     | mm     | in       | mm       |   |
| W12012 | .140 | 3.6   | .012   | 0.3048 | .00006   | .001524  | A |
| W12024 | .140 | 3.6   | .024   | 0.6096 | .00012   | .003048  | B |
| W12039 | .140 | 3.6   | .03937 | 1      | .000197  | .005     | C |
| W12048 | .140 | 3.6   | .048   | 1.2192 | .00024   | .006096  |   |
| W12078 | .140 | 3.6   | .07874 | 2      | .000394  | .010     |   |
| W12096 | .140 | 3.6   | .096   | 2.4384 | .00048   | .012192  | D |
| W12157 | .140 | 3.6   | .15748 | 4      | .000787  | .020     |   |
| W12315 | .140 | 3.6   | .31496 | 8      | .001575  | .040     | Ð |

Native units: 🗌 imperial 📒 metric




### Force v Pulse Rate Charts

– – – – = Recommended load limit


Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.





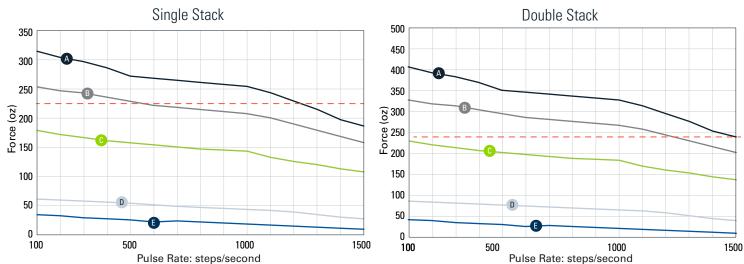


| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase | Mc<br>We | itor<br>ight | Power<br>Input | l     | -  |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|----------|--------------|----------------|-------|----|
| • Temperature Rise: 167° F (75° C)                                                                | V       | А       | Ω                    | mH                   | OZ       | g            | W              | in    | mm |
| Single Stack                                                                                      | 2.5     | 0.49    | 5.1                  | 1.5                  | 1.5      | 43           | 4.2            | 1.18  | 30 |
|                                                                                                   | 5       | 0.24    | 20.4                 | 6.7                  | 1.5      | 43           | 4.2            | 1.18  | 30 |
|                                                                                                   | 7.5     | 0.16    | 45.9                 | 39                   | 1.5      | 43           | 4.2            | 1.18  | 30 |
|                                                                                                   | 2.5     | 1.9     | 1.1                  | 1.1                  | 2.4      | 68           | 7.5            | 1.496 | 38 |
| Double Stack                                                                                      | 5       | 0.75    | 6.7                  | 5.8                  | 2.4      | 68           | 7.5            | 1.496 | 38 |
|                                                                                                   | 7.5     | 0.35    | 34.8                 | 35.6                 | 2.4      | 68           | 7.5            | 1.496 | 38 |










### **Screw Specifications**

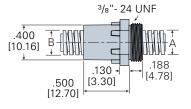
| Screw  | Dian | neter | Le     | ad     | Travel p | er Step |   |
|--------|------|-------|--------|--------|----------|---------|---|
| Code   | in   | mm    | in     | mm     | in       | mm      |   |
| 012012 | .125 | 3.13  | .012   | 0.3048 | .00006   | .001524 | A |
| 012019 | .125 | 3.13  | .01969 | 0.5    | .000098  | .0025   |   |
| 012024 | .125 | 3.13  | .024   | 0.6096 | .00012   | .003048 | В |
| 012039 | .125 | 3.13  | .03937 | 1      | .000197  | .005    | C |
| 012048 | .125 | 3.13  | .048   | 1.2192 | .00024   | .006096 |   |
| 012062 | .125 | 3.13  | .0625  | 1.5875 | .000313  | .007938 |   |
| 012078 | .125 | 3.13  | .07874 | 2      | .000394  | .010    |   |
| 012096 | .125 | 3.13  | .096   | 2.4384 | .00048   | .012192 |   |
| 012125 | .125 | 3.13  | .125   | 3.175  | .000625  | .015875 | D |
| 012157 | .125 | 3.13  | .15748 | 4      | .000787  | .020    |   |
| 012314 | .125 | 3.13  | .31496 | 8      | .001575  | .040    | e |

Native units: imperial metric

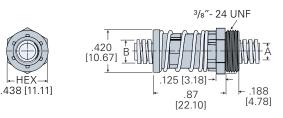
#### Force v Pulse Rate Charts

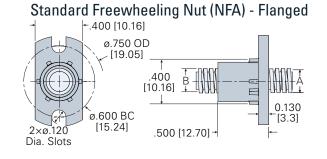


\_ \_ \_ = Recommended load limit

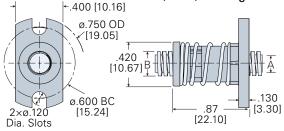

Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.

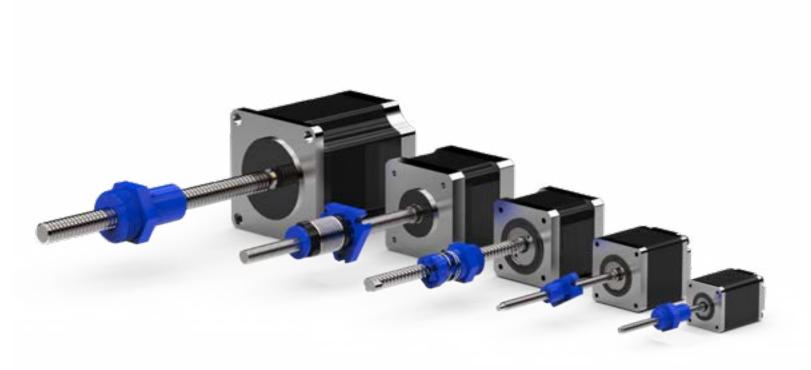






#### Standard Freewheeling Nut (NTA) - Threaded



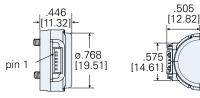


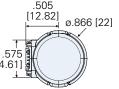


#### Axial Anti-backlash Nut (ATA) - Threaded





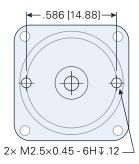
#### Axial Anti-backlash Nut (AFA) - Flanged



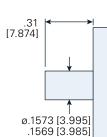




### **NEMA 8** Accessories

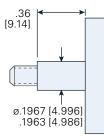



### Encoder

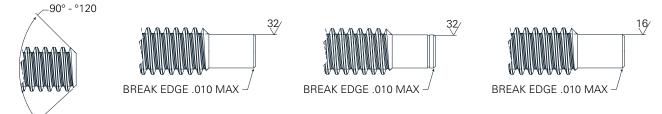




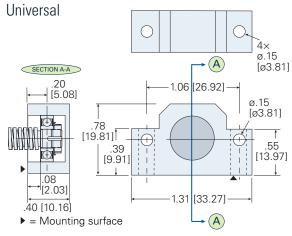

### **Encoder-Ready Options**


Rear View

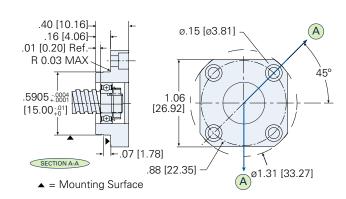






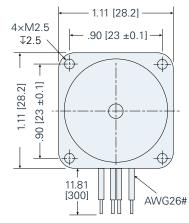


Non-Captive & Captive

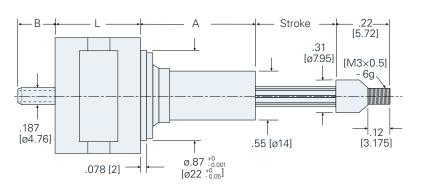



# Screw End Machining



# 

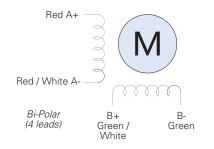




Flanged



17








| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase |      | otor<br>ight | Power<br>Input |      | -    |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|------|--------------|----------------|------|------|
| • Temperature Rise: 167°F (75°C)                                                                  | V       | А       | Ω                    | mH                   | OZ   | g            | W              | in   | mm   |
| Single Stack                                                                                      | 2.1     | 1.00    | 2.1                  | 1.5                  | 4.2  | 119          | 4.2            | 1.26 | 32.2 |
|                                                                                                   | 5       | 0.42    | 11.9                 | 6.7                  | 4.2  | 119          | 4.2            | 1.26 | 32.2 |
|                                                                                                   | 12      | 0.18    | 68.6                 | 39                   | 4.2  | 119          | 4.2            | 1.26 | 32.2 |
|                                                                                                   | 2.1     | 1.90    | 1.1                  | 1.1                  | 6.35 | 180          | 7.5            | 1.81 | 46   |
| Double Stack                                                                                      | 5       | 0.75    | 6.7                  | 5.8                  | 6.35 | 180          | 7.5            | 1.81 | 46   |
|                                                                                                   | 12      | 0.35    | 34.8                 | 35.6                 | 6.35 | 180          | 7.5            | 1.81 | 46   |

### Stroke Codes

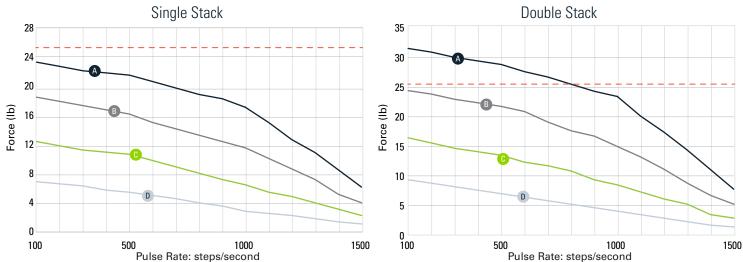
| Stroke | Str  | oke  | ļ    | 4    | В    |      |  |
|--------|------|------|------|------|------|------|--|
| Code   | in   | mm   | in   | mm   | in   | mm   |  |
| 0.50   | .50  | 12.7 | .82  | 20.5 | .07  | 1.7  |  |
| 0.75   | .75  | 19.1 | 1.05 | 26.8 | .32  | 8.0  |  |
| 1.00   | 1.00 | 25.4 | 1.30 | 33.2 | .57  | 14.4 |  |
| 1.25   | 1.25 | 31.8 | 1.55 | 39.5 | .82  | 20.7 |  |
| 1.50   | 1.50 | 38.1 | 1.80 | 45.9 | 1.07 | 27.1 |  |
| 2.00   | 2.00 | 50.8 | 2.30 | 58.6 | 1.57 | 39.8 |  |







metric

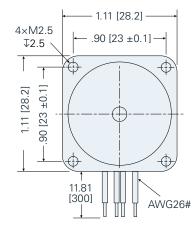


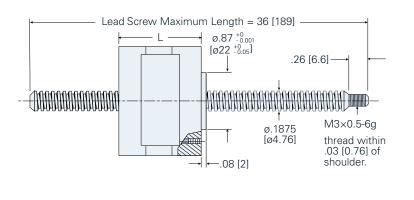

### **Screw Specifications**

| Screw  | Diam  | eter | Le   | ead   | Travel p | per Step |  |
|--------|-------|------|------|-------|----------|----------|--|
| Code   | in    | mm   | in   | mm    | in       | mm       |  |
| W18025 | .1875 | 4.76 | .025 | 0.635 | .000125  | 0.003175 |  |
| W18050 | .1875 | 4.76 | .050 | 1.27  | .00025   | 0.00635  |  |
| W18100 | .1875 | 4.76 | .100 | 2.54  | .00050   | 0.01270  |  |
| W18200 | .1875 | 4.76 | .200 | 5.08  | .00100   | 0.02540  |  |
| W18400 | .1875 | 4.76 | .400 | 10.16 | .002     | 0.0508   |  |

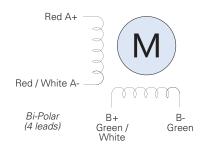
Native units: 🗌 imperial

### Force v Pulse Rate Charts





\_ \_ \_ = Recommended load limit

Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.





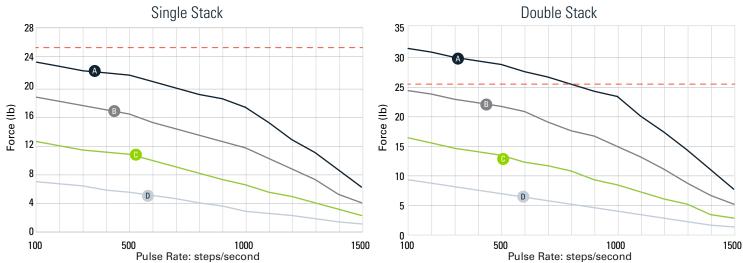





| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase |      | otor<br>ight | Power<br>Input | I    | -    |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|------|--------------|----------------|------|------|
| • Temperature Rise: 167° F (75° C)                                                                | V       | А       | Ω                    | mH                   | OZ   | g            | W              | in   | mm   |
|                                                                                                   | 2.1     | 1.00    | 2.1                  | 1.5                  | 4.2  | 119          | 4.2            | 1.26 | 32.2 |
| Single Stack                                                                                      | 5       | 0.42    | 11.9                 | 6.7                  | 4.2  | 119          | 4.2            | 1.26 | 32.2 |
|                                                                                                   | 12      | 0.18    | 68.6                 | 39                   | 4.2  | 119          | 4.2            | 1.26 | 32.2 |
|                                                                                                   | 2.1     | 1.90    | 1.1                  | 1.1                  | 6.35 | 180          | 7.5            | 1.81 | 46   |
| Double Stack                                                                                      | 5       | 0.75    | 6.7                  | 5.8                  | 6.35 | 180          | 7.5            | 1.81 | 46   |
|                                                                                                   | 12      | 0.35    | 34.8                 | 35.6                 | 6.35 | 180          | 7.5            | 1.81 | 46   |





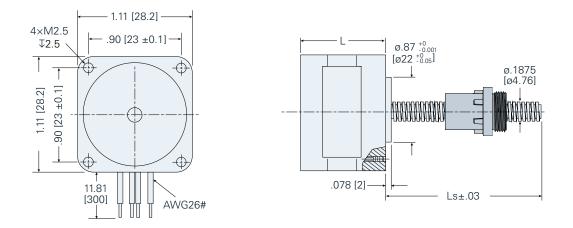



### **Screw Specifications**

| Screw  | Diam  | eter | Le   | ad    | Travel p | per Step |  |
|--------|-------|------|------|-------|----------|----------|--|
| Code   | in    | mm   | in   | mm    | in       | mm       |  |
| W18025 | .1875 | 4.76 | .025 | 0.635 | .000125  | 0.003175 |  |
| W18050 | .1875 | 4.76 | .050 | 1.27  | .00025   | 0.00635  |  |
| W18100 | .1875 | 4.76 | .100 | 2.54  | .00050   | 0.01270  |  |
| W18200 | .1875 | 4.76 | .200 | 5.08  | .00100   | 0.02540  |  |
| W18400 | .1875 | 4.76 | .400 | 10.16 | .002     | 0.0508   |  |

Native units: 🗌 imperial 📒 metric

### Force v Pulse Rate Charts




\_ \_ \_ = Recommended load limit

Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.

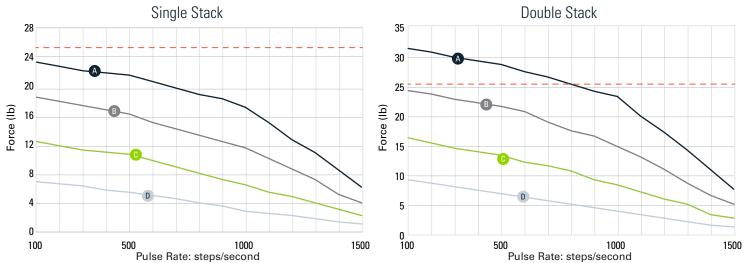






| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase |      | otor<br>ight | Power<br>Input | I    | L    |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|------|--------------|----------------|------|------|
| • Temperature Rise: 167° F (75° C)                                                                | V       | А       | Ω                    | mH                   | OZ   | g            | W              | in   | mm   |
|                                                                                                   | 2.1     | 1.00    | 2.1                  | 1.5                  | 4.2  | 119          | 4.2            | 1.26 | 32.2 |
| Single Stack                                                                                      | 5       | 0.42    | 11.9                 | 6.7                  | 4.2  | 119          | 4.2            | 1.26 | 32.2 |
|                                                                                                   | 12      | 0.18    | 68.6                 | 39                   | 4.2  | 119          | 4.2            | 1.26 | 32.2 |
|                                                                                                   | 2.1     | 1.90    | 1.1                  | 1.1                  | 6.35 | 180          | 7.5            | 1.81 | 46   |
| Double Stack                                                                                      | 5       | 0.75    | 6.7                  | 5.8                  | 6.35 | 180          | 7.5            | 1.81 | 46   |
|                                                                                                   | 12      | 0.35    | 34.8                 | 35.6                 | 6.35 | 180          | 7.5            | 1.81 | 46   |






### **Screw Specifications**

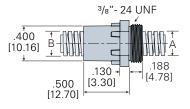
| Screw  | Diam  | neter | Le   | ad    | Travel p | per Step |   |
|--------|-------|-------|------|-------|----------|----------|---|
| Code   | in    | mm    | in   | mm    | in       | mm       |   |
| 018025 | .1875 | 4.76  | .025 | 0.635 | .000125  | 0.003175 | A |
| 018050 | .1875 | 4.76  | .050 | 1.27  | .00025   | 0.00635  | B |
| 018100 | .1875 | 4.76  | .100 | 2.54  | .00050   | 0.01270  | C |
| 018200 | .1875 | 4.76  | .200 | 5.08  | .00100   | 0.02540  |   |

Native units: 🗌 imperial 📒 metric

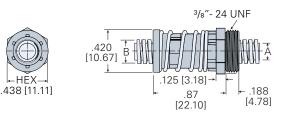
### Force v Pulse Rate Charts

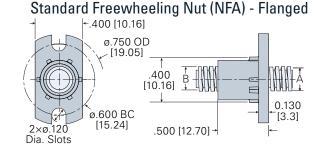


\_ \_ \_ = Recommended load limit

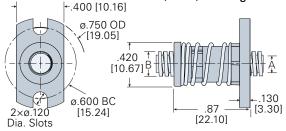

Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.

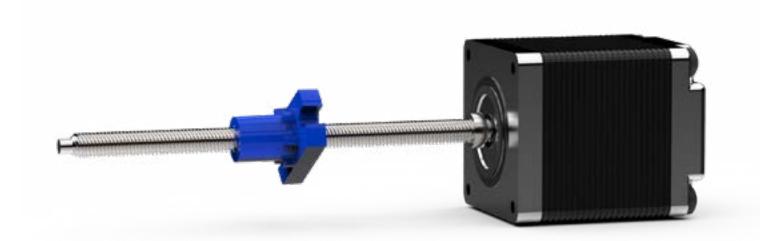






#### Standard Freewheeling Nut (NTA) - Threaded



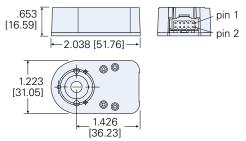




#### Axial Anti-backlash Nut (ATA) - Threaded



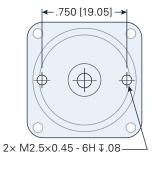


#### Axial Anti-backlash Nut (AFA) - Flanged

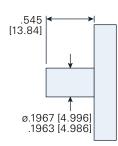




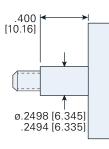


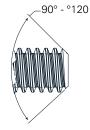

#### Encoder




### **Encoder-Ready Options**

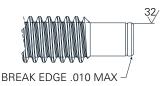


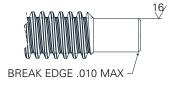




External

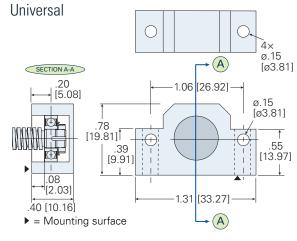


Non-Captive & Captive

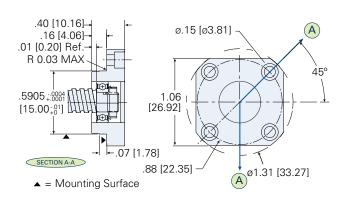




### Screw End Machining

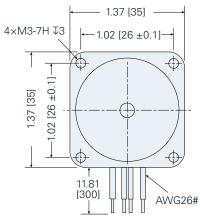


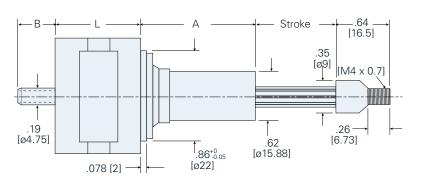

BREAK EDGE .010 MAX -

32⁄







Ezze Mount<sup>™</sup> Bearing Support

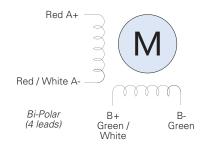



Flanged










| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MO</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase |      | otor<br>ight | Power<br>Input | I    | _    |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|------|--------------|----------------|------|------|
| <ul> <li>Insulation Resistance: 20 MΩ</li> <li>Temperature Rise: 167°F (75°C)</li> </ul>          | V       | А       | Ω                    | mH                   | OZ   | g            | W              | in   | mm   |
|                                                                                                   | 2.33    | 1.25    | 1.86                 | 2.8                  | 5.7  | 162          | 5.7            | 1.36 | 34.5 |
| Single Stack                                                                                      | 5       | 0.57    | 8.8                  | 13                   | 5.7  | 162          | 5.7            | 1.36 | 34.5 |
|                                                                                                   | 12      | 0.24    | 50.5                 | 60                   | 5.7  | 162          | 5.7            | 1.36 | 34.5 |
|                                                                                                   | 2.33    | 2.0     | 1.2                  | 1.95                 | 8.47 | 240          | 9.1            | 1.89 | 48   |
| Double Stack                                                                                      | 5       | 0.91    | 5.5                  | 7.63                 | 8.47 | 240          | 9.1            | 1.89 | 48   |
|                                                                                                   | 12      | 0.38    | 31.6                 | 65.1                 | 8.47 | 240          | 9.1            | 1.89 | 48   |

### Stroke Codes

|        | 1    |      |      |      |      |      |  |
|--------|------|------|------|------|------|------|--|
| Stroke | Str  | oke  | ŀ    | 4    | В    |      |  |
| Code   | in   | mm   | in   | mm   | in   | mm   |  |
| 0.50   | .50  | 12.7 | .82  | 20.8 | .04  | 1    |  |
| 0.75   | .75  | 19.1 | 1.07 | 27.2 | .29  | 7.4  |  |
| 1.00   | 1.00 | 25.4 | 1.32 | 33.5 | .54  | 13.7 |  |
| 1.25   | 1.25 | 31.8 | 1.57 | 39.9 | .79  | 20.1 |  |
| 1.50   | 1.50 | 38.1 | 1.82 | 46.2 | 1.04 | 26.4 |  |
| 2.00   | 2.00 | 50.8 | 2.32 | 58.9 | 1.54 | 39.1 |  |

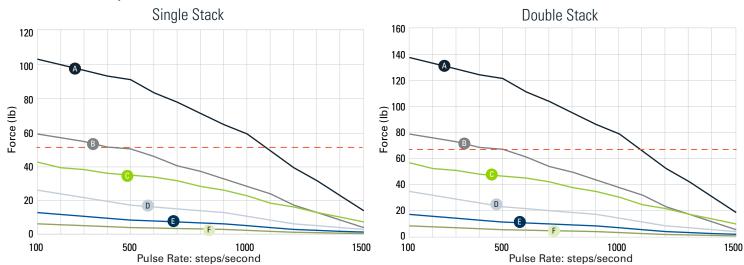
# Wiring Diagram







26

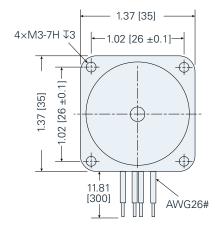


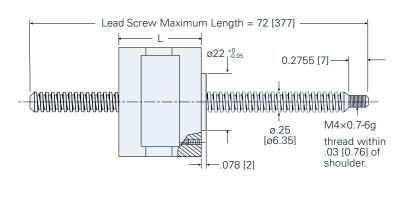

### **Screw Specification**

| Screw  | Diar | neter | Le     | ad      | Travel per Step |           |  |
|--------|------|-------|--------|---------|-----------------|-----------|--|
| Code   | in   | mm    | in     | mm      | in              | mm        |  |
| W25024 | .219 | 5.6   | .024   | 0.6096  | .00012          | 0.003048  |  |
| W25031 | .219 | 5.6   | .03125 | 0.79375 | .000156         | 0.003969  |  |
| W25039 | .219 | 5.6   | .03937 | 1       | .000197         | 0.005     |  |
| W25048 | .219 | 5.6   | .048   | 1.2192  | .00024          | 0.006096  |  |
| W25050 | .219 | 5.6   | .050   | 1.27    | .00025          | 0.00635   |  |
| W25062 | .219 | 5.6   | .0625  | 1.5875  | .0003125        | 0.0079375 |  |
| W25096 | .219 | 5.6   | .096   | 2.438   | .00048          | 0.012192  |  |
| W25100 | .219 | 5.6   | .100   | 2.54    | .0005           | 0.0127    |  |
| W25125 | .219 | 5.6   | .125   | 3.175   | .000625         | 0.015875  |  |
| W25192 | .219 | 5.6   | .192   | 4.877   | .00096          | 0.024384  |  |
| W25250 | .219 | 5.6   | .250   | 6.35    | .00125          | 0.03175   |  |
| W25384 | .219 | 5.6   | .384   | 9.754   | .00192          | 0.048768  |  |
| W25500 | .219 | 5.6   | .500   | 12.7    | .0025           | 0.0635    |  |
| W25999 | .219 | 5.6   | 1.000  | 25.4    | .005            | 0.127     |  |

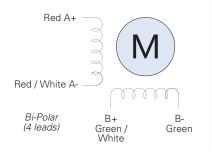
Native units: 🗌 imperial 📒 metric

# Force v Pulse Speed Chart





\_ \_ \_ = Recommended load limit

Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.









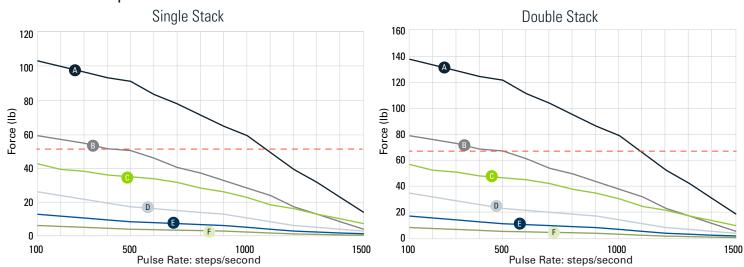

| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase | Mc<br>We | otor<br>ight | Power<br>Input | l    | -    |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|----------|--------------|----------------|------|------|
| • Temperature Rise: 167° F (75° C)                                                                | V       | А       | Ω                    | mH                   | OZ       | g            | W              | in   | mm   |
|                                                                                                   | 2.33    | 1.25    | 1.86                 | 2.8                  | 5.7      | 162          | 5.7            | 1.36 | 34.5 |
| Single Stack                                                                                      | 5       | 0.57    | 8.8                  | 13                   | 5.7      | 162          | 5.7            | 1.36 | 34.5 |
|                                                                                                   | 12      | 0.24    | 50.5                 | 60                   | 5.7      | 162          | 5.7            | 1.36 | 34.5 |
|                                                                                                   | 2.33    | 2.00    | 1.2                  | 1.95                 | 8.47     | 240          | 9.1            | 1.89 | 48   |
| Double Stack                                                                                      | 5       | 0.91    | 5.5                  | 7.63                 | 8.47     | 240          | 9.1            | 1.89 | 48   |
|                                                                                                   | 12      | 0.38    | 31.6                 | 65.1                 | 8.47     | 240          | 9.1            | 1.89 | 48   |









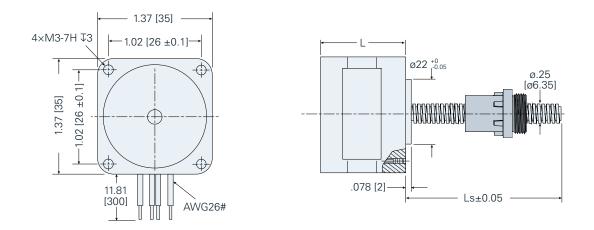

#### **Screw Specification**

|   | per Step  | Travel p | ad      | Le     | neter | Diam | Screw  |
|---|-----------|----------|---------|--------|-------|------|--------|
|   | mm        | in       | mm      | in     | mm    | in   | Code   |
| A | 0.003048  | .00012   | 0.6096  | .024   | 5.6   | .219 | W25024 |
| B | 0.003969  | .000156  | 0.79375 | .03125 | 5.6   | .219 | W25031 |
|   | 0.005     | .000197  | 1       | .03937 | 5.6   | .219 | W25039 |
|   | 0.006096  | .00024   | 1.2192  | .048   | 5.6   | .219 | W25048 |
|   | 0.00635   | .00025   | 1.27    | .050   | 5.6   | .219 | W25050 |
|   | 0.0079375 | .0003125 | 1.5875  | .0625  | 5.6   | .219 | W25062 |
| C | 0.012192  | .00048   | 2.438   | .096   | 5.6   | .219 | W25096 |
|   | 0.0127    | .0005    | 2.54    | .100   | 5.6   | .219 | W25100 |
| D | 0.015875  | .000625  | 3.175   | .125   | 5.6   | .219 | W25125 |
|   | 0.024384  | .00096   | 4.877   | .192   | 5.6   | .219 | W25192 |
| E | 0.03175   | .00125   | 6.35    | .250   | 5.6   | .219 | W25250 |
|   | 0.048768  | .00192   | 9.754   | .384   | 5.6   | .219 | W25384 |
| F | 0.0635    | .0025    | 12.7    | .500   | 5.6   | .219 | W25500 |
|   | 0.127     | .005     | 25.4    | 1.000  | 5.6   | .219 | W25999 |

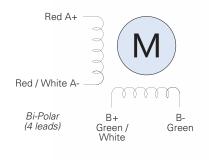
Native units: 🗌 imperial

al 📃 metric

# Force v Pulse Speed Chart




- - - - Recommended load limit


Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.



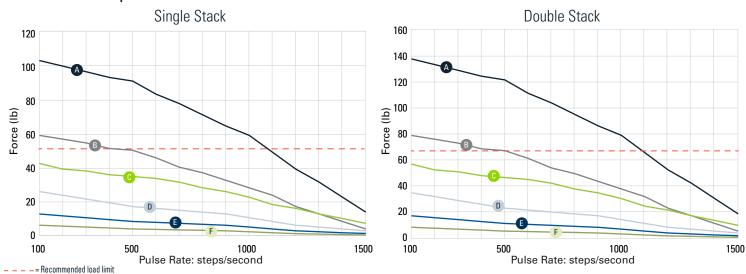




| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase |      | otor<br>ight | Power<br>Input | I    | L    |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|------|--------------|----------------|------|------|
| • Temperature Rise: 167° F (75° C)                                                                | V       | А       | Ω                    | mH                   | OZ   | g            | W              | in   | mm   |
| Single Stack                                                                                      | 2.33    | 1.25    | 1.86                 | 2.8                  | 5.7  | 162          | 5.7            | 1.36 | 34.5 |
|                                                                                                   | 5       | 0.57    | 8.8                  | 13                   | 5.7  | 162          | 5.7            | 1.36 | 34.5 |
|                                                                                                   | 12      | 0.24    | 50.5                 | 60                   | 5.7  | 162          | 5.7            | 1.36 | 34.5 |
|                                                                                                   | 2.33    | 2.0     | 1.2                  | 1.95                 | 8.47 | 240          | 9.1            | 1.89 | 48   |
| Double Stack                                                                                      | 5       | 0.91    | 5.5                  | 7.63                 | 8.47 | 240          | 9.1            | 1.89 | 48   |
|                                                                                                   | 12      | 0.38    | 31.6                 | 65.1                 | 8.47 | 240          | 9.1            | 1.89 | 48   |








### **Screw Specifications**

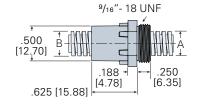
| Screw  | Dian | neter | Le     | ad      | Travel p | per Step  |   |
|--------|------|-------|--------|---------|----------|-----------|---|
| Code   | in   | mm    | in     | mm      | in       | mm        |   |
| 025024 | .250 | 6.35  | .024   | 0.6096  | .00012   | 0.003048  | A |
| 025031 | .250 | 6.35  | .03125 | 0.79375 | .000156  | 0.003969  | В |
| 025039 | .250 | 6.35  | .03937 | 1       | .000197  | 0.005     |   |
| 025048 | .250 | 6.35  | .048   | 1.2192  | .00024   | 0.006096  |   |
| 025050 | .250 | 6.35  | .050   | 1.27    | .00025   | 0.00635   |   |
| 025062 | .250 | 6.35  | .0625  | 1.5875  | .0003125 | 0.0079375 |   |
| 025096 | .250 | 6.35  | .096   | 2.438   | .00048   | 0.012192  | C |
| 025100 | .250 | 6.35  | .100   | 2.54    | .0005    | 0.0127    |   |
| 025125 | .250 | 6.35  | .125   | 3.175   | .000625  | 0.015875  | D |
| 025192 | .250 | 6.35  | .192   | 4.877   | .00096   | 0.024384  |   |
| 025196 | .250 | 6.35  | .19685 | 5       | .00098   | 0.025     |   |
| 025250 | .250 | 6.35  | .250   | 6.35    | .00125   | 0.03175   | E |
| 025384 | .250 | 6.35  | .384   | 9.754   | .00192   | 0.048768  |   |
| 025393 | .250 | 6.35  | .3937  | 10      | .00197   | 0.050     |   |
| 025500 | .250 | 6.35  | .500   | 12.7    | .0025    | 0.0635    | F |
| 025750 | .250 | 6.35  | .750   | 19.05   | .00375   | 0.09525   |   |
| 025999 | .250 | 6.35  | 1.000  | 25.4    | .005     | 0.127     |   |

Native units: 🗌 imperial

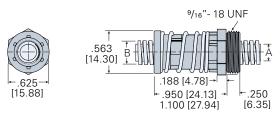
metric



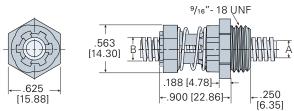
# Force v Pulse Speed Chart


Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.

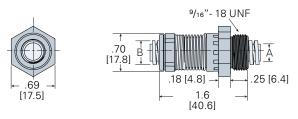




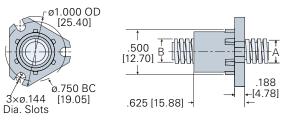

#### Standard Freewheeling Nut (NTA) - Threaded



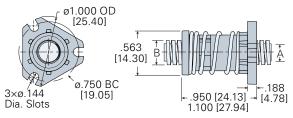




#### Axial Anti-backlash Nut (ATA) - Threaded



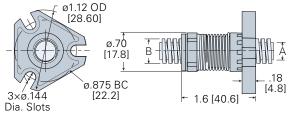

#### Radial Anti-backlash Nut (RTA) - Threaded




#### Torsional Anti-backlash Nut (KTA) - Threaded



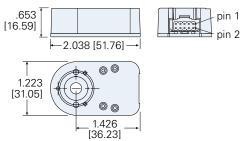
#### Standard Freewheeling Nut (NFA) - Flanged




#### Axial Anti-backlash Nut (AFA) - Flanged



Radial Anti-backlash Nut (RFA) - Flanged


#### Torsional Anti-backlash Nut (KFA) - Flanged







#### Encoder



# **Encoder-Ready Options**

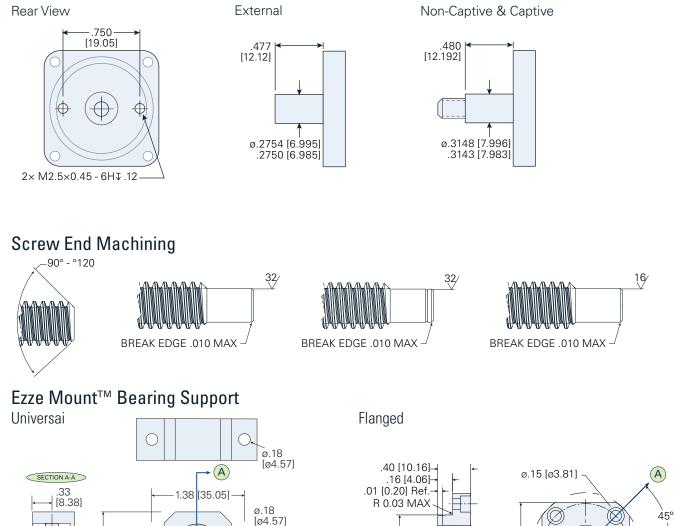
1.06

[26.92]

.53 [13.46] A

1.69 [42.93]

→ (A)


MAU

.10

.66 [16.76]

[2.54]

▶ = Mounting surface



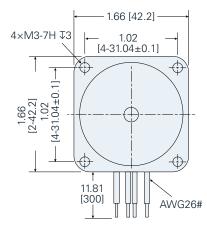
.5905 + 8001

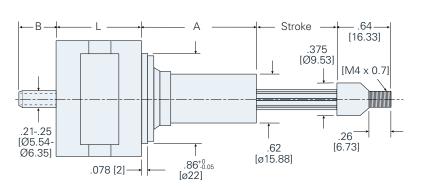
[15.00+01]

SECTION A-A

▲ = Mounting Surface

.72 [18.29]

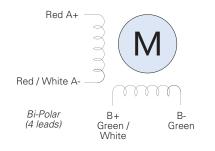

ø1.31 [33.27]


1.06 j [26.92]

.88 [22.35]

.07 [1.78]








| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase |      | otor<br>ight | Power<br>Input | I    | -     |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|------|--------------|----------------|------|-------|
| • Temperature Rise: 167°F (75°C)                                                                  | V       | А       | Ω                    | mH                   | OZ   | g            | W              | in   | mm    |
| Single Stack                                                                                      | 2.33    | 1.50    | 1.56                 | 1.9                  | 8.5  | 241          | 13             | 1.33 | 33.8  |
|                                                                                                   | 5       | 0.70    | 7.2                  | 10.6                 | 8.5  | 241          | 13             | 1.33 | 33.8  |
|                                                                                                   | 12      | 0.29    | 41.5                 | 73.3                 | 8.5  | 241          | 13             | 1.33 | 33.8  |
|                                                                                                   | 2.33    | 2.60    | 0.9                  | 1.33                 | 12.4 | 352          | 14             | 1.88 | 47.75 |
| Double Stack                                                                                      | 5       | 1.30    | 3.8                  | 6.6                  | 12.4 | 352          | 14             | 1.88 | 47.75 |
|                                                                                                   | 12      | 0.55    | 21.9                 | 45.1                 | 12.4 | 352          | 14             | 1.88 | 47.75 |

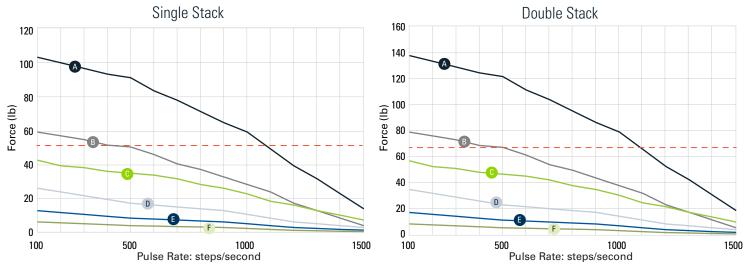
### Stroke Codes

|             | Str  | oke  | ļ    | 4    | В    |       |  |
|-------------|------|------|------|------|------|-------|--|
| Stroke Code | in   | mm   | in   | mm   | in   | mm    |  |
| 0.50        | .50  | 12.7 | .79  | 19.8 | .02  | 0.51  |  |
| 0.75        | .75  | 19.1 | 1.03 | 26.2 | .27  | 6.86  |  |
| 1.00        | 1.00 | 25.4 | 1.28 | 32.5 | .52  | 13.21 |  |
| 1.25        | 1.25 | 31.8 | 1.53 | 38.9 | .77  | 19.56 |  |
| 1.50        | 1.50 | 38.1 | 1.78 | 45.2 | 1.02 | 25.91 |  |
| 2.00        | 2.00 | 50.8 | 2.28 | 57.9 | 1.52 | 38.61 |  |







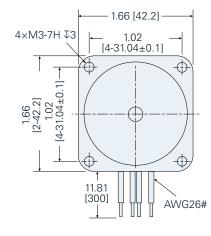


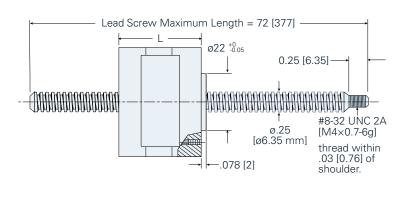

### **Screw Specification**

| Screw  | Dian | neter | Le     | ad      | Travel   | per Step  |   |
|--------|------|-------|--------|---------|----------|-----------|---|
| Code   | in   | mm    | in     | mm      | in       | mm        |   |
| W25024 | .219 | 5.6   | .024   | 0.6096  | .00012   | 0.003048  | A |
| W25031 | .219 | 5.6   | .03125 | 0.79375 | .000156  | 0.003969  | e |
| W25039 | .219 | 5.6   | .03937 | 1       | .000197  | 0.005     |   |
| W25048 | .219 | 5.6   | .048   | 1.2192  | .00024   | 0.006096  |   |
| W25050 | .219 | 5.6   | .050   | 1.27    | .00025   | 0.00635   |   |
| W25062 | .219 | 5.6   | .0625  | 1.5875  | .0003125 | 0.0079375 |   |
| W25096 | .219 | 5.6   | .096   | 2.438   | .00048   | 0.012192  | C |
| W25100 | .219 | 5.6   | .100   | 2.54    | .0005    | 0.0127    |   |
| W25125 | .219 | 5.6   | .125   | 3.175   | .000625  | 0.015875  | D |
| W25192 | .219 | 5.6   | .192   | 4.877   | .00096   | 0.024384  |   |
| W25250 | .219 | 5.6   | .250   | 6.35    | .00125   | 0.03175   | E |
| W25384 | .219 | 5.6   | .384   | 9.754   | .00192   | 0.048768  |   |
| W25500 | .219 | 5.6   | .500   | 12.7    | .0025    | 0.0635    | F |
| W25999 | .219 | 5.6   | 1.000  | 25.4    | .005     | 0.127     |   |

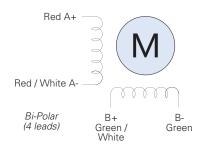
Native units: 🗌 imperial 📒 metric

Force v Pulse Speed Chart





- - - - Recommended load limit

Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.





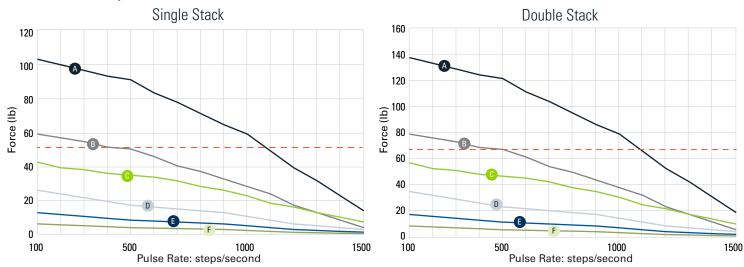





| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase | Mc<br>We | otor<br>ight | Power<br>Input | I    | -     |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|----------|--------------|----------------|------|-------|
| • Temperature Rise: 167° F (75° C)                                                                | V       | А       | Ω                    | mH                   | OZ       | g            | W              | in   | mm    |
| Single Stack                                                                                      | 2.33    | 1.50    | 1.56                 | 1.9                  | 8.5      | 241          | 13             | 1.33 | 33.8  |
|                                                                                                   | 5       | 0.70    | 7.2                  | 10.6                 | 8.5      | 241          | 13             | 1.33 | 33.8  |
|                                                                                                   | 12      | 0.29    | 41.5                 | 73.3                 | 8.5      | 241          | 13             | 1.33 | 33.8  |
|                                                                                                   | 2.33    | 2.6     | 0.9                  | 1.33                 | 12.4     | 352          | 14             | 1.88 | 47.75 |
| Double Stack                                                                                      | 5       | 1.3     | 3.8                  | 6.6                  | 12.4     | 352          | 14             | 1.88 | 47.75 |
|                                                                                                   | 12      | 0.55    | 21.9                 | 45.1                 | 12.4     | 352          | 14             | 1.88 | 47.75 |





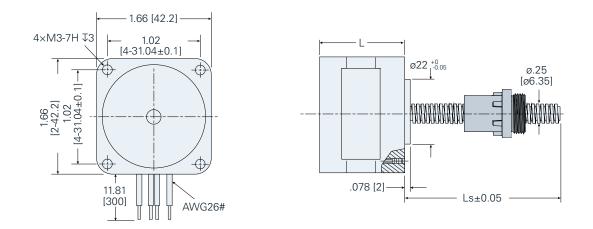




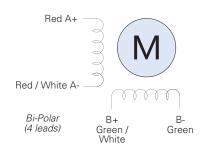

| Screw  | Dian | neter | Le     | ad      | Travel   | per Step  |   |
|--------|------|-------|--------|---------|----------|-----------|---|
| Code   | in   | mm    | in     | mm      | in       | mm        |   |
| W25024 | .219 | 5.6   | .024   | 0.6096  | .00012   | 0.003048  | A |
| W25031 | .219 | 5.6   | .03125 | 0.79375 | .000156  | 0.003969  | E |
| W25039 | .219 | 5.6   | .03937 | 1       | .000197  | 0.005     |   |
| W25048 | .219 | 5.6   | .048   | 1.2192  | .00024   | 0.006096  |   |
| W25050 | .219 | 5.6   | .050   | 1.27    | .00025   | 0.00635   |   |
| W25062 | .219 | 5.6   | .0625  | 1.5875  | .0003125 | 0.0079375 |   |
| W25096 | .219 | 5.6   | .096   | 2.438   | .00048   | 0.012192  |   |
| W25100 | .219 | 5.6   | .100   | 2.54    | .0005    | 0.0127    |   |
| W25125 | .219 | 5.6   | .125   | 3.175   | .000625  | 0.015875  |   |
| W25192 | .219 | 5.6   | .192   | 4.877   | .00096   | 0.024384  |   |
| W25250 | .219 | 5.6   | .250   | 6.35    | .00125   | 0.03175   | E |
| W25384 | .219 | 5.6   | .384   | 9.754   | .00192   | 0.048768  |   |
| W25500 | .219 | 5.6   | .500   | 12.7    | .0025    | 0.0635    | F |
| W25999 | .219 | 5.6   | 1.000  | 25.4    | .005     | 0.127     |   |

Native units: 🗌 imperial 📒 metric

## Force v Pulse Speed Chart




- - - - Recommended load limit


Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.



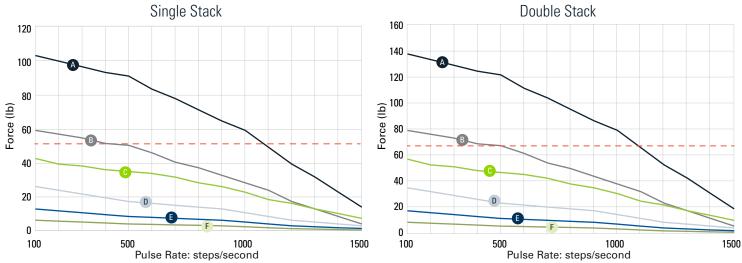




| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase |      | otor<br>ight | Power<br>Input |      | L     |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|------|--------------|----------------|------|-------|
| • Temperature Rise: 167° F (75° C)                                                                | V       | А       | Ω                    | mH                   | OZ   | g            | W              | in   | mm    |
|                                                                                                   | 2.33    | 1.50    | 1.56                 | 1.9                  | 8.5  | 241          | 13             | 1.33 | 33.8  |
| Single Stack                                                                                      | 5       | 0.70    | 7.2                  | 10.6                 | 8.5  | 241          | 13             | 1.33 | 33.8  |
|                                                                                                   | 12      | 0.29    | 41.5                 | 73.3                 | 8.5  | 241          | 13             | 1.33 | 33.8  |
|                                                                                                   | 2.33    | 2.6     | 0.9                  | 1.33                 | 12.4 | 352          | 14             | 1.88 | 47.75 |
| Double Stack                                                                                      | 5       | 1.3     | 3.8                  | 6.6                  | 12.4 | 352          | 14             | 1.88 | 47.75 |
|                                                                                                   | 12      | 0.55    | 21.9                 | 45.1                 | 12.4 | 352          | 14             | 1.88 | 47.75 |










| Screw  | Dian | neter | Le     | ad      | Travel p | per Step  |   |
|--------|------|-------|--------|---------|----------|-----------|---|
| Code   | in   | mm    | in     | mm      | in       | mm        |   |
| 025024 | .250 | 6.35  | .024   | 0.6096  | .00012   | 0.003048  | A |
| 025031 | .250 | 6.35  | .03125 | 0.79375 | .000156  | 0.003969  | В |
| 025039 | .250 | 6.35  | .03937 | 1       | .000197  | 0.005     |   |
| 025048 | .250 | 6.35  | .048   | 1.2192  | .00024   | 0.006096  |   |
| 025050 | .250 | 6.35  | .050   | 1.27    | .00025   | 0.00635   |   |
| 025062 | .250 | 6.35  | .0625  | 1.5875  | .0003125 | 0.0079375 |   |
| 025096 | .250 | 6.35  | .096   | 2.438   | .00048   | 0.012192  | C |
| 025100 | .250 | 6.35  | .100   | 2.54    | .0005    | 0.0127    |   |
| 025125 | .250 | 6.35  | .125   | 3.175   | .000625  | 0.015875  | D |
| 025192 | .250 | 6.35  | .192   | 4.877   | .00096   | 0.024384  |   |
| 025196 | .250 | 6.35  | .19685 | 5       | .00098   | 0.025     |   |
| 025250 | .250 | 6.35  | .250   | 6.35    | .00125   | 0.03175   | E |
| 025384 | .250 | 6.35  | .384   | 9.754   | .00192   | 0.048768  |   |
| 025393 | .250 | 6.35  | .3937  | 10      | .00197   | 0.050     |   |
| 025500 | .250 | 6.35  | .500   | 12.7    | .0025    | 0.0635    | F |
| 025750 | .250 | 6.35  | .750   | 19.05   | .00375   | 0.09525   |   |
| 025999 | .250 | 6.35  | 1.000  | 25.4    | .005     | 0.127     |   |

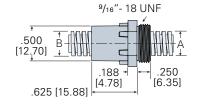
Native units: 🗌 imperial

metric

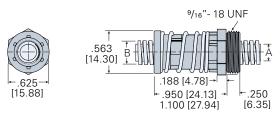


## Force v Pulse Speed Chart

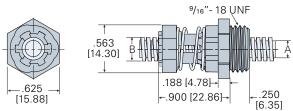
\_ \_ \_ \_ Recommended load limit


Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.

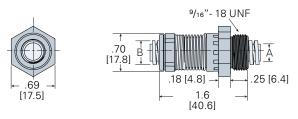




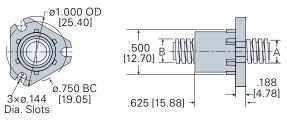

#### Standard Freewheeling Nut (NTA) - Threaded



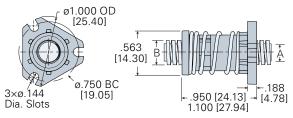




#### Axial Anti-backlash Nut (ATA) - Threaded



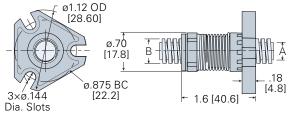

#### Radial Anti-backlash Nut (RTA) - Threaded




### Torsional Anti-backlash Nut (KTA) - Threaded



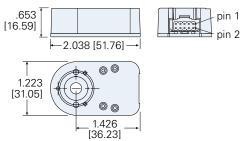
#### Standard Freewheeling Nut (NFA) - Flanged



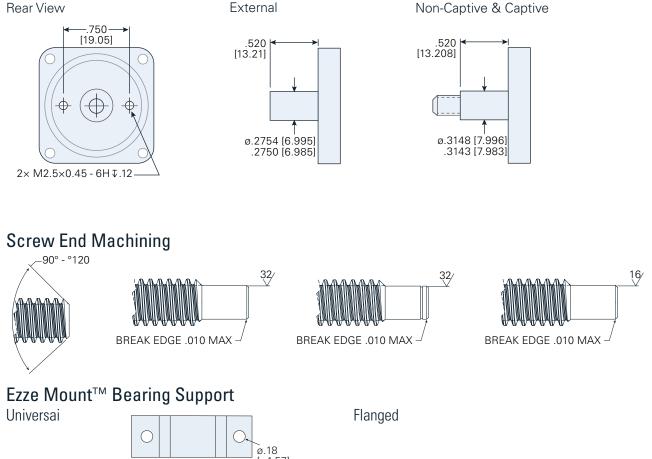

### Axial Anti-backlash Nut (AFA) - Flanged

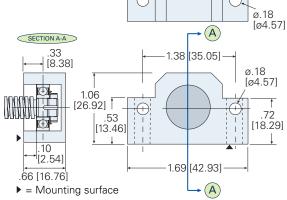


Radial Anti-backlash Nut (RFA) - Flanged


#### Torsional Anti-backlash Nut (KFA) - Flanged

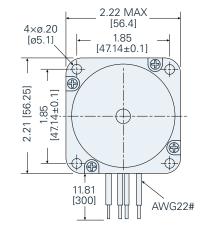


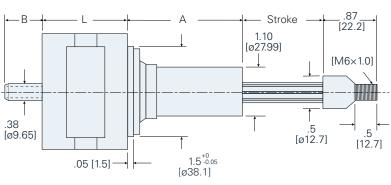



### Encoder



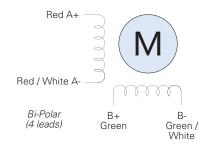

## **Encoder-Ready Options**






.40 [10.16] .16 [4.06] .01 [0.20] Ref. R 0.03 MAX .5905, 000 [15.00,0] .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .5905, 000 .







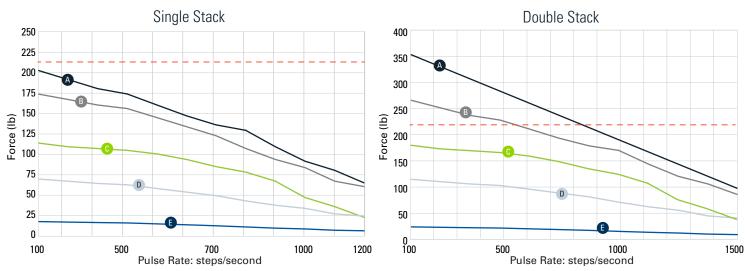

| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase |      | otor<br>ight | Power<br>Input |      | L    |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|------|--------------|----------------|------|------|
| • Temperature Rise: 167° F (75° C)                                                                | V       | А       | Ω                    | mH                   | OZ   | g            | W              | in   | mm   |
| Single Stack                                                                                      | 3.25    | 2       | 1.63                 | 3.5                  | 18   | 511          | 13             | 1.78 | 45.2 |
| Single Stack                                                                                      | 5       | 1.3     | 3.85                 | 10.5                 | 18   | 511          | 13             | 1.78 | 45.2 |
|                                                                                                   | 12      | 0.54    | 22.2                 | 47                   | 18   | 511          | 13             | 1.78 | 45.2 |
|                                                                                                   | 3.25    | 3.32    | 0.98                 | 1.33                 | 33.8 | 958          | 14             | 2.60 | 66.0 |
| Double Stack                                                                                      | 5       | 2.16    | 2.31                 | 6.6                  | 33.8 | 958          | 14             | 2.60 | 66.0 |
|                                                                                                   | 12      | 0.9     | 13.33                | 45.1                 | 33.8 | 958          | 14             | 2.60 | 66.0 |

## Stroke Codes

| Stroke | Str  | oke  | ŀ    | 4    | E    | 3    |
|--------|------|------|------|------|------|------|
| Code   | in   | mm   | in   | mm   | in   | mm   |
| 0.50   | .50  | 12.7 | 1.01 | 25.7 | 0.06 | 1.5  |
| 0.75   | .75  | 19.1 | 1.26 | 32.0 | 0.31 | 7.9  |
| 1.00   | 1.00 | 25.4 | 1.51 | 38.4 | 0.56 | 14.2 |
| 1.25   | 1.25 | 31.8 | 1.76 | 44.7 | 0.81 | 20.6 |
| 1.50   | 1.50 | 38.1 | 2.01 | 51.1 | 1.06 | 26.9 |
| 2.00   | 2.00 | 50.8 | 2.51 | 63.8 | 1.56 | 39.6 |









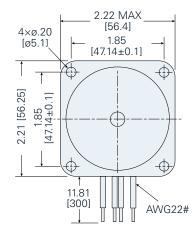

| Screw  | Diam | neter | Le     | ad     | Travel   | per Step  |  |
|--------|------|-------|--------|--------|----------|-----------|--|
| Code   | in   | mm    | in     | mm     | in       | mm        |  |
| W37050 | .375 | 9.53  | .050   | 1.27   | .00025   | 0.00635   |  |
| W37062 | .375 | 9.53  | .0625  | 1.5875 | .0003125 | 0.0079375 |  |
| W37083 | .375 | 9.53  | .08334 | 2.117  | .000417  | 0.010584  |  |
| W37100 | .375 | 9.53  | .100   | 2.54   | .0005    | 0.0127    |  |
| W37125 | .375 | 9.53  | .125   | 3.175  | .000625  | 0.015875  |  |
| W37166 | .375 | 9.53  | .16666 | 4.233  | .000833  | 0.021166  |  |
| W37200 | .375 | 9.53  | .200   | 5.08   | .001     | 0.0254    |  |
| W37250 | .375 | 9.53  | .250   | 6.35   | .00125   | 0.03175   |  |
| W37400 | .375 | 9.53  | .400   | 10.16  | .002     | 0.0508    |  |
| W37999 | .375 | 9.53  | 1.000  | 25.4   | .005     | 0.127     |  |

Native units: 🗌 imperial

ial 📃 metric



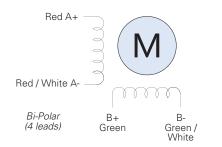
### Force v Pulse Rate Charts


Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.

#### Don't see what you're looking for? Custom options available. Contact us for details.



43








| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase |      | otor<br>ight | Power<br>Input | I    | -    |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|------|--------------|----------------|------|------|
| • Temperature Rise: 167°F (75°C)                                                                  | V       | А       | Ω                    | mH                   | OZ   | g            | W              | in   | mm   |
|                                                                                                   | 3.25    | 2       | 1.63                 | 3.5                  | 18   | 511          | 13             | 1.78 | 45.2 |
| Single Stack                                                                                      | 5       | 1.3     | 3.85                 | 10.5                 | 18   | 511          | 13             | 1.78 | 45.2 |
|                                                                                                   | 12      | 0.54    | 22.2                 | 47                   | 18   | 511          | 13             | 1.78 | 45.2 |
|                                                                                                   | 3.25    | 3.32    | 0.98                 | 1.33                 | 33.8 | 958          | 14             | 2.60 | 66.0 |
| Double Stack                                                                                      | 5       | 2.16    | 2.31                 | 6.6                  | 33.8 | 958          | 14             | 2.60 | 66.0 |
|                                                                                                   | 12      | 0.9     | 13.33                | 45.1                 | 33.8 | 958          | 14             | 2.60 | 66.0 |

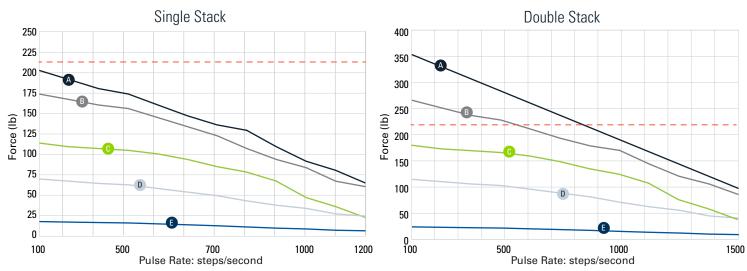
## Wiring Diagram





SHIP

QUOTES


DOWNLOAD



| Screw  | Diam | neter | Le     | ad     | Travel p | per Step  |   |
|--------|------|-------|--------|--------|----------|-----------|---|
| Code   | in   | mm    | in     | mm     | in       | mm        |   |
| W37050 | .375 | 9.53  | .050   | 1.27   | .00025   | 0.00635   |   |
| W37062 | .375 | 9.53  | .0625  | 1.5875 | .0003125 | 0.0079375 |   |
| W37083 | .375 | 9.53  | .08334 | 2.117  | .000417  | 0.010584  | ( |
| W37100 | .375 | 9.53  | .100   | 2.54   | .0005    | 0.0127    | ( |
| W37125 | .375 | 9.53  | .125   | 3.175  | .000625  | 0.015875  |   |
| W37166 | .375 | 9.53  | .16666 | 4.233  | .000833  | 0.021166  |   |
| W37200 | .375 | 9.53  | .200   | 5.08   | .001     | 0.0254    |   |
| W37250 | .375 | 9.53  | .250   | 6.35   | .00125   | 0.03175   | ( |
| W37400 | .375 | 9.53  | .400   | 10.16  | .002     | 0.0508    |   |
| W37999 | .375 | 9.53  | 1.000  | 25.4   | .005     | 0.127     |   |

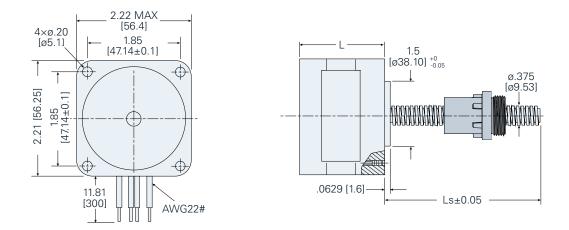
Native units: 🗌 imperial

rial 📃 metric

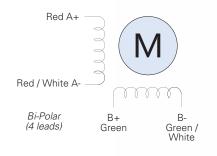


### Force v Pulse Rate Charts

- - - - = Recommended load limit


Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.

#### Don't see what you're looking for? Custom options available. Contact us for details.



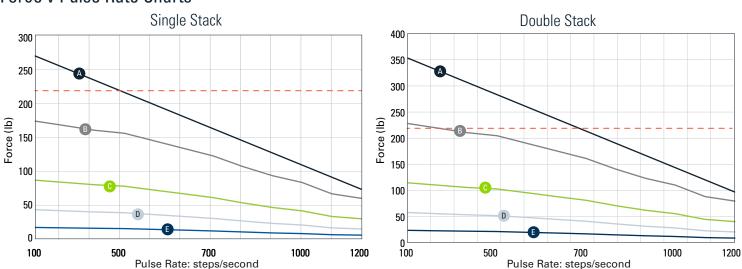

45





| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase | Mc<br>We | otor<br>ight | Power<br>Input | I    | L    |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|----------|--------------|----------------|------|------|
| • Temperature Rise: 167°F (75°C)                                                                  | V       | А       | Ω                    | mH                   | OZ       | g            | W              | in   | mm   |
|                                                                                                   | 3.25    | 2       | 1.63                 | 3.5                  | 18       | 511          | 13             | 1.78 | 45.2 |
| Single Stack                                                                                      | 5       | 1.3     | 3.85                 | 10.5                 | 18       | 511          | 13             | 1.78 | 45.2 |
|                                                                                                   | 12      | 0.54    | 22.2                 | 47                   | 18       | 511          | 13             | 1.78 | 45.2 |
|                                                                                                   | 3.25    | 3.32    | 0.98                 | 1.33                 | 33.8     | 958          | 14             | 2.60 | 66.0 |
| Double Stack                                                                                      | 5       | 2.16    | 2.31                 | 6.6                  | 33.8     | 958          | 14             | 2.60 | 66.0 |
|                                                                                                   | 12      | 0.9     | 13.33                | 45.1                 | 33.8     | 958          | 14             | 2.60 | 66.0 |









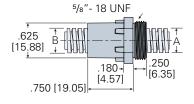

| Screw  | Dian | neter | Le     | ad     | Travel p | ber Step  |   |
|--------|------|-------|--------|--------|----------|-----------|---|
| Code   | in   | mm    | in     | mm     | in       | mm        |   |
| 037050 | .375 | 9.53  | .050   | 1.27   | .00025   | 0.00635   |   |
| 037062 | .375 | 9.53  | .0625  | 1.5875 | .0003125 | 0.0079375 |   |
| 037083 | .375 | 9.53  | .08334 | 2.117  | .000417  | 0.010584  |   |
| 037100 | .375 | 9.53  | .100   | 2.54   | .0005    | 0.0127    | B |
| 037125 | .375 | 9.53  | .125   | 3.175  | .000625  | 0.015875  |   |
| 037166 | .375 | 9.53  | .16666 | 4.233  | .000833  | 0.021166  |   |
| 037196 | .375 | 9.53  | .19685 | 5      | .00098   | 0.025     |   |
| 037200 | .375 | 9.53  | .200   | 5.08   | .001     | 0.0254    |   |
| 037250 | .375 | 9.53  | .250   | 6.35   | .00125   | 0.03175   | C |
| 037393 | .375 | 9.53  | .3937  | 10     | .00197   | 0.050     | D |
| 037400 | .375 | 9.53  | .400   | 10.16  | .002     | 0.0508    |   |
| 037472 | .375 | 9.53  | .47244 | 12     | .002362  | 0.060     |   |
| 037590 | .375 | 9.53  | .59055 | 15     | .002953  | 0.075     |   |
| 037999 | .375 | 9.53  | 1.000  | 25.4   | .005     | 0.127     | e |
| 037M30 | .375 | 9.53  | 1.1811 | 30     | .005906  | 0.150     |   |

Native units: 🗌 imperial 📃 metric

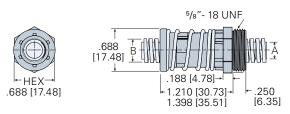


### Force v Pulse Rate Charts

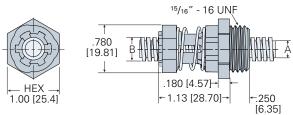
- - - - = Recommended load limit


Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.

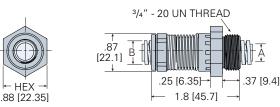




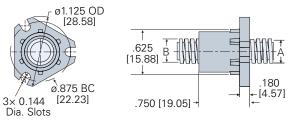

#### Standard Freewheeling Nut (NTA) - Threaded



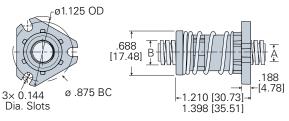




#### Axial Anti-backlash Nut (ATA) - Threaded

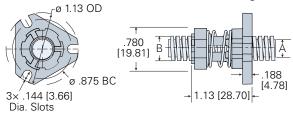



#### Radial Anti-backlash Nut (RTA) - Threaded

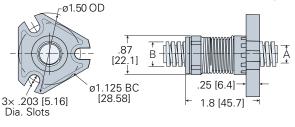



### Torsional Anti-backlash Nut (KTA) - Threaded




#### Standard Freewheeling Nut (NFA) - Flanged

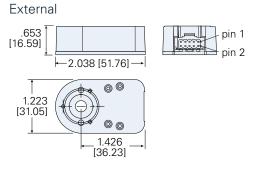



#### Axial Anti-backlash Nut (AFA) - Flanged



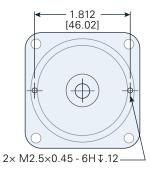
#### Radial Anti-backlash Nut (RFA) - Flanged



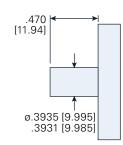

#### Torsional Anti-backlash Nut (KFA) - Flanged








## Encoder




## **Encoder-Ready Options**

Rear View



External



32/

Non-Captive & Captive

Non-Captive & Captive

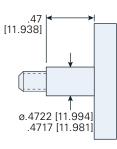
1.900

[48.26]

C

3.020 [76.71]

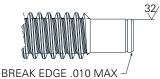
ø2.240

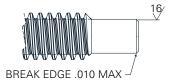

[56.9]

.653 [16.59]

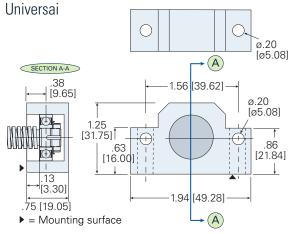
Ì

pin 2,

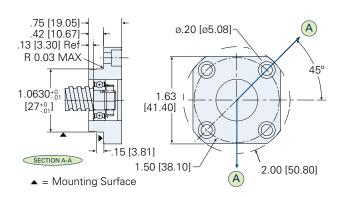

pin 1



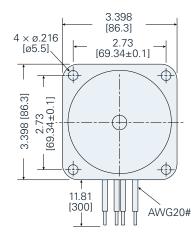

## Screw End Machining

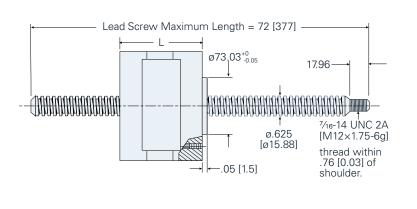




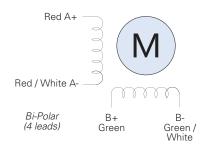







## Ezze Mount<sup>™</sup> Bearing Support




Flanged





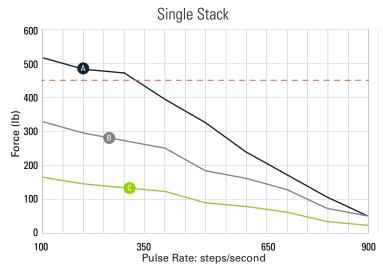





| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MΩ</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase | Mc<br>We | otor<br>ight | Power<br>Input | l      | -      |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|----------|--------------|----------------|--------|--------|
| • Temperature Rise: 167°F (75°C)                                                                  | V       | А       | Ω                    | mH                   | OZ       | g            | W              | in     | mm     |
|                                                                                                   | 2.85    | 5.47    | .52                  | 2.86                 | 5.07     | 2.3          | 31.2           | 3.0929 | 78.560 |
| Single Stack                                                                                      | 5       | 3.12    | 1.6                  | 8.8                  | 5.07     | 2.3          | 31.2           | 3.0929 | 78.560 |
|                                                                                                   | 12      | 1.3     | 9.23                 | 51                   | 5.07     | 2.3          | 31.2           | 3.0929 | 78.560 |







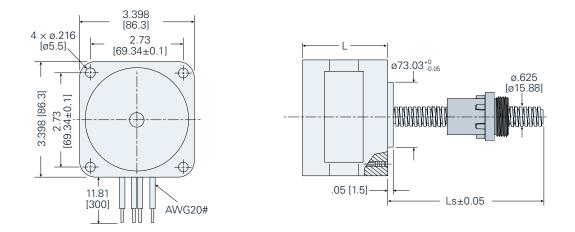



| Screw  | Diameter |       | Lea  | ad   | Travel per Step |         |  |
|--------|----------|-------|------|------|-----------------|---------|--|
| Code   | in       | mm    | in   | mm   | in              | mm      |  |
| W62100 | .625     | 15.88 | .100 | 2.54 | .0005           | 0.0127  |  |
| W62250 | .625     | 15.88 | .250 | 6.35 | .00125          | 0.03175 |  |
| W62500 | .625     | 15.88 | .500 | 12.7 | .0025           | 0.0635  |  |

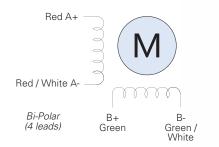
Native units: 🗌 imperial 📒 metric

### Force v Pulse Chart




- - - - Recommended load limit

Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.





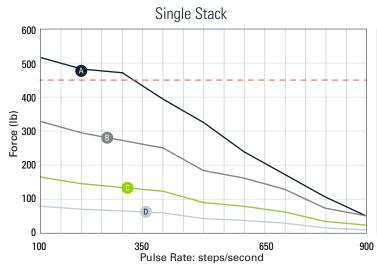





| <ul> <li>Bipolar Wiring</li> <li>1.8° Step Angle</li> <li>Insulation Resistance: 20 MO</li> </ul> | Voltage | Current | Resistance/<br>Phase | Inductance/<br>Phase | Mc<br>We | itor<br>ight | Power<br>Input |        | L      |  |
|---------------------------------------------------------------------------------------------------|---------|---------|----------------------|----------------------|----------|--------------|----------------|--------|--------|--|
| <ul> <li>Insulation Resistance: 20 MΩ</li> <li>Temperature Rise: 167° F (75° C)</li> </ul>        | V       | А       | Ω                    | mH                   | OZ       | g            | W              | in     | mm     |  |
|                                                                                                   | 2.85    | 5.47    | .52                  | 2.86                 | 5.07     | 2.3          | 31.2           | 3.0929 | 78.560 |  |
| Single Stack                                                                                      | 5       | 3.12    | 1.6                  | 8.8                  | 5.07     | 2.3          | 31.2           | 3.0929 | 78.560 |  |
|                                                                                                   | 12      | 1.3     | 9.23                 | 51                   | 5.07     | 2.3          | 31.2           | 3.0929 | 78.560 |  |









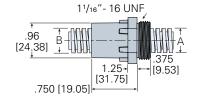

|   | per Step | Travel p | ad    | Le    | neter | Screw |        |
|---|----------|----------|-------|-------|-------|-------|--------|
|   | mm       | in       | mm    | in    | mm    | in    | Code   |
| A | 0.0127   | .0005    | 2.54  | .100  | 15.88 | .625  | 062100 |
| E | 0.03175  | .00125   | 6.35  | .250  | 15.88 | .625  | 062250 |
| C | 0.0635   | .0025    | 12.7  | .500  | 15.88 | .625  | 062500 |
|   | 0.09525  | .00375   | 19.05 | .750  | 15.88 | .625  | 062750 |
| D | 0.127    | .005     | 25.4  | 1.000 | 15.88 | .625  | 062999 |

Native units: imperial metric

Force v Pulse Chart



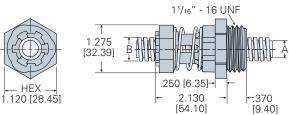
<sup>- - - - =</sup> Recommended load limit


Speed charts are based on using bi-polar motors with chopper drives at 100% duty cycle. Chopper drive curves were created using full steps on a 5 volt motor and a 40v power supply.

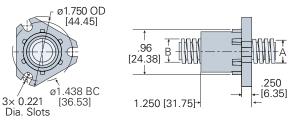




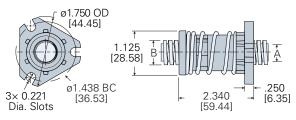
#### Standard Freewheeling Nut (NTA) - Threaded



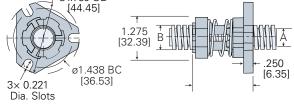




#### Axial Anti-backlash Nut (ATA) - Threaded




#### Radial Anti-backlash Nut (RTA) - Threaded



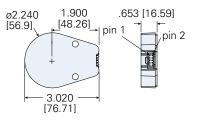

#### Standard Freewheeling Nut (NFA) - Flanged



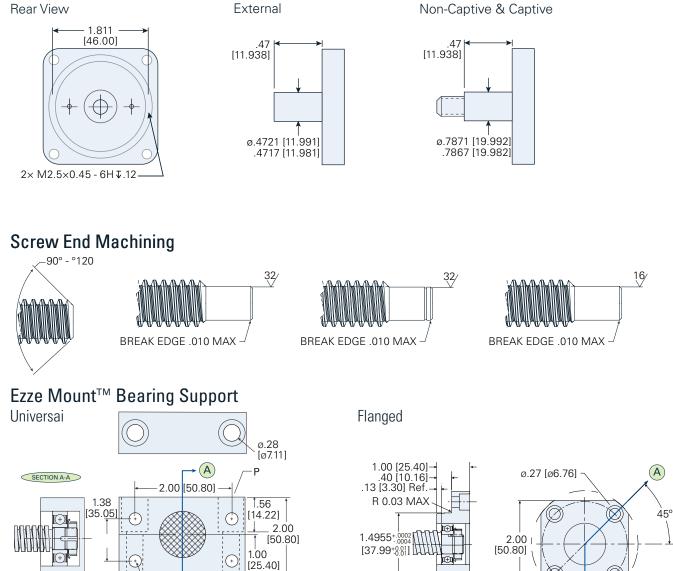
### Axial Anti-backlash Nut (AFA) - Flanged



# Radial Anti-backlash Nut (RFA) - Flanged







### **NEMA 34** Accessories



### Encoder



## **Encoder-Ready Options**



.31

[7.87]

1.19

[30.23]

.38 \_\_ [9.65]

(+);

ø.2<mark>8</mark> [ø7.11]

- (A)

2.75 [69.85]

A

2.60 [66.04]

M

2.00 [50.80]

SECTION A-A

▲ = Mounting Surface

## **Available Lead Screws** Captive and Non-Captive Stepper Motor Linear Actuators



| Le     | ead     | Travel pe | er Step |        |         |         |         |         |         |
|--------|---------|-----------|---------|--------|---------|---------|---------|---------|---------|
| in     | mm      | in        | mm      | NEMA 8 | NEMA 11 | NEMA 14 | NEMA 17 | NEMA 23 | NEMA 34 |
| .012   | 0.3048  | .00006    | .001524 | W12012 |         |         |         |         |         |
| .01969 | 0.5     | .000098   | .0025   | W12019 |         |         |         |         |         |
| .024   | 0.6096  | .00012    | .003048 | W12024 |         | W25024  | W25024  |         |         |
| .025   | 0.635   | .000125   | .003175 |        | W18025  |         |         |         |         |
| .03125 | 0.79375 | .000156   | .003969 |        |         | W25031  | W25031  |         |         |
| .03937 | 1       | .000197   | .005    | W12039 |         | W25039  | W25039  |         |         |
| .048   | 1.2192  | .00024    | .006096 | W12048 |         | W25048  | W25048  |         |         |
| .050   | 1.27    | .00025    | .00635  |        | W18050  | W25050  | W25050  | W37050  |         |
| .0625  | 1.5875  | .000313   | .007938 |        |         | W25062  | W25062  | W37062  |         |
| .07874 | 2       | .000394   | .010    | W12078 |         |         |         |         |         |
| .08334 | 2.1168  | .000417   | .010584 |        |         |         |         | W37083  |         |
| .096   | 2.4384  | .00048    | .012192 | W12096 |         | W25096  | W25096  |         |         |
| .100   | 2.54    | .0005     | .0127   |        | W18100  | W25100  | W25100  | W37100  | W62100  |
| .125   | 3.175   | .000625   | .015875 |        |         | W25125  | W25125  | W37125  |         |
| .15748 | 4       | .000787   | .020    | W12157 |         |         |         |         |         |
| .16666 | 4.2332  | .000833   | .021166 |        |         |         |         | W37166  |         |
| .192   | 4.8768  | .00096    | .024384 |        |         | W25192  | W25192  |         |         |
| .200   | 5.08    | .001      | .0254   |        | W18200  |         |         | W37200  |         |
| .250   | 6.35    | .00125    | .03175  |        |         | W25250  | W25250  | W37250  | W62250  |
| .31496 | 8       | .001575   | .040    | W12314 |         |         |         |         |         |
| .384   | 9.7536  | .00192    | .048768 |        |         | W25384  | W25384  |         |         |
| .400   | 10.16   | .002      | .0508   |        | W18400  |         |         | W37400  |         |
| .500   | 12.7    | .0025     | .0635   |        |         | W25500  | W25500  |         | W62500  |
| 1.000  | 25.4    | .005      | .127    |        |         | W25999  | W25999  | W37999  |         |

Native units: 🗌 imperial 📃 metric

\* only available with External Stepper Motor Linear Actuators

## Available Lead Screws External Stepper Motor Linear Actuators



| L      | ead     | Travel pe | er Step |         |         |         |         |         |         |
|--------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|
| in     | mm      | in        | mm      | NEMA 8  | NEMA 11 | NEMA 14 | NEMA 17 | NEMA 23 | NEMA 34 |
| .012   | 0.3048  | .00006    | .001524 | 012012  |         |         |         |         |         |
| .01969 | 0.5     | .000098   | .0025   | 012019  |         |         |         |         |         |
| .024   | 0.6096  | .00012    | .003048 | 012024  |         | 025024  | 025024  |         |         |
| .025   | 0.635   | .000125   | .003175 |         | 018025  |         |         |         |         |
| .03125 | 0.79375 | .000156   | .003969 |         |         | 025031  | 025031  |         |         |
| .03937 | 1       | .000197   | .005    | 012039  |         | 025039  | 025039  |         |         |
| .048   | 1.2192  | .00024    | .006096 | 012048  |         | 025048  | 025048  |         |         |
| .050   | 1.27    | .00025    | .00635  |         | 018050  | 025050  | 025050  | 037050  |         |
| .0625  | 1.5875  | .000313   | .007938 | 012062* |         | 025062  | 025062  | 037062  |         |
| .07874 | 2       | .000394   | .010    | 012078  |         |         |         |         |         |
| .08334 | 2.1168  | .000417   | .010584 |         |         |         |         | 037083  |         |
| .096   | 2.4384  | .00048    | .012192 | 012096  |         | 025096  | 025096  |         |         |
| .100   | 2.54    | .0005     | .0127   |         | 018100  | 025100  | 025100  | 037100  | 062100  |
| .125   | 3.175   | .000625   | .015875 | 012125* |         | 025125  | 025125  | 037125  |         |
| .15748 | 4       | .000787   | .020    | 012157  |         |         |         |         |         |
| .16666 | 4.2332  | .000833   | .021166 |         |         |         |         | 037166  |         |
| .192   | 4.8768  | .00096    | .024384 |         |         | 025192  | 025192  |         |         |
| .19685 | 5       | .000984   | .025    |         |         | 025196* | 025196* | 037196* |         |
| .200   | 5.08    | .001      | .0254   |         | 018200  |         |         | 037200  |         |
| .250   | 6.35    | .00125    | .03175  |         |         | 025250  | 025250  | 037250  | 062250  |
| .31496 | 8       | .001575   | .040    | 012314  |         |         |         |         |         |
| .384   | 9.7536  | .00192    | .048768 |         |         | 025384  | 025384  |         |         |
| .3937  | 10      | .001969   | .050    |         |         | 025393* | 025393* | 037393* |         |
| .400   | 10.16   | .002      | .0508   |         | 018400  |         |         | 037400  |         |
| .47244 | 12      | .002362   | .060    |         |         |         |         | 037472* |         |
| .500   | 12.7    | .0025     | .0635   |         |         | 025500  | 025500  |         | 062500  |
| .59055 | 15      | .002953   | .075    |         |         |         |         | 037590* |         |
| .750   | 19.05   | .00375    | .09525  |         |         | 025750* | 025750* |         | 062750* |
| 1.000  | 25.4    | .005      | .127    |         |         | 025999  | 025999  | 037999  | 062999* |
| 1.1811 | 30      | .005906   | .150    |         |         |         |         | 037M30* |         |

Native units: 🗌 imperial 📃 metric

\* only available with External Stepper Motor Linear Actuators